jueves, 14 de junio de 2007
INTRODUCCIÓN
LA ATMÓSFERRA
Diagrama general de la atmósfera (Miller, 1991)La troposfera o baja atmósfera, es la que está en íntimo contacto con la superficie terrestre y se extiende hasta los 11 km. s.n.m. en promedio (Miller, 1991). Tiene un grosor que varía desde 8 km. en los polos hasta 16 km. en el ecuador, principalmente debido a la diferencia de presupuesto energético en esos lugares . Abarca el 75% de la masa de gases totales que componen la atmósfera, el 99% de la masa de la atmósfera se encuentra bajo los 30 km. s.nm. (GCCIP, 1997; Miller, 1991). Consta en particular, en 99% de dos gases, el Nitrógeno (N2, 78%) y Oxígeno (O2, 21%). El 1% que resta consta principalmente de Argón (Ar, @ 1%) y Dióxido de Carbono (CO2, 0,035%). El aire de la troposfera incluye vapor de agua en cantidades variables de acuerdo a condiciones locales, por ejemplo, desde 0,01% en los polos hasta 5% en los trópicos (Miller, 1991).
COMPOSICIÓN ADMOSFÉRICA
Diagrama de flujos energéticos atmosféricos (Miller, 1991)Previamente es importante entender que el clima terrestre depende del balance energético entre la radiación solar y la radiación emitida por la Tierra. En esta reirradiación, sumada a la emisión de energía geotectónica, los gases invernadero juegan un rol crucial. Al analizar los gases atmosféricos, incluidos los gases invernadero, es importante identificar las fuentes, reservorios o sinks y el ciclo de vida de cada uno de ellos, datos cruciales para controlar la contaminación atmosférica.Una fuente es el punto o lugar donde un gas, o contaminante, es emitido o sea, donde entran a la atmósfera.
Conclusión De Tema Atmósfera Como conclusión la atmósfera esta principalmente constituida por nitrógeno, oxígeno y algunos otros gases traza y aerosoles que regulan el sistema climático, al regular el balance energético entre la radiación solar incidente y la radiación terrestre que se emite. La mayor parte de la atmósfera se encuentra por debajo de los 10 km., en la troposfera, en la que el clima terrestre opera, y donde el efecto invernadero opera en forma más notoria. Por encima de ella se encuentran capas que son definidas por sus temperaturas.
PRESUPUESTO ENERGÉTICO DE LA ÁTMOSFERA
Los Oceanos Existe transferencia de momentum al océano a través de los vientos superficiales, que a su vez movilizan las corrientes oceánicas superficiales globales. Estas corrientes asisten en la transferencia latitudinal de calor, análogamente a lo que realiza la atmósfera. Las aguas cálidas se movilizan hacia los polos y viceversa. La energía también es transferida a través de la evaporación. El agua que se evapora desde la superficie oceánica almacena calor latente que es luego liberado cuando el vapor se condensa formando nubes y precipitaciones.
Desviación de la temperatura superficial de los océanos con respecto al promedio (FMOC Home PageLo significativo de los océanos es que almacenan mucha mayor cantidad de energía que la atmósfera. Esto se debe a la mayor capacidad calórica (4.2 veces la de la atmósfera) y su mayor densidad (1000 veces mayor). La estructura vertical de los océanos puede dividirse en dos capas, que difieren en su escala de interacción con la atmósfera. La capa inferior, que involucra las aguas frías y profundas, compromete el 80% del volumen oceánico. La capa superior, que está en contacto íntimo con la atmósfera, es la capa de frontera estacional, un volumen mezclado que se extiende sólo hasta los 100 m. de profundidad en los trópicos, pero que llega a varios kilómetros en las aguas polares. Esta capa sola, almacena 30 veces más energía que la atmósfera. De esta manera, un cambio dado de contenido de calor en el océano redundará en un cambio a lo menos 30 veces mayor en la atmósfera. Por ello pequeños cambios en el contenido energético de los océanos pueden tener un efecto considerable sobre el clima global y claramente sobre la temperatura global (GCCIP, 1997).El intercambio de energía también ocurre verticalmente, entre la Capa Frontera y las aguas profundas. La sal contenida en las aguas marinas se mantiene disuelta en ella al momento de formarse el hielo en los polos, esto aumenta la salinidad del océano. Estas aguas frías y salinas son particularmente densas y se hunden, transportando en ellas considerable cantidad de energía. Para mantener el equilibrio en el flujo de masas de agua existe una circulación global termohalina, que juega un rol muy importante en la regulación del clima global (GCCIP, 1997).
La Criosfera La criosfera consiste de las regiones cubiertas por nieve o hielo, sean tierra o mar. Incluye la Antártida, el Océano Artico, Groenlandia, el Norte de Canadá, el Norte de Siberia y la mayor parte de las cimas más altas de cadenas montañosas. Juega un rol muy importante en la regulación del clima global.La nieve y el hielo tienen un alto albedo, por ello, algunas partes de la Antártida reflejan hasta un 90% de la radiación solar incidente, comparado con el promedio global que es de un 31%. Sin la criosfera, el albedo global sería considerablemente más bajo, se absorbería más energía a nivel de la superficie terrestre y consecuentemente la temperatura atmosférica sería más alta.También tiene un rol en desconectar la atmósfera con los océanos, reduciendo la transferencia de humedad y momentum, y de esta manera, estabiliza las transferencias de energía en la atmósfera. Finalmente, su presencia afecta marcadamente el volumen de los océanos y de los niveles globales del mar, cambios en ella, pueden afectar el presupuesto energético del clima.
Biosfera La vida puede encontrarse en casi cualquier ambiente terrestre. Pero al discutir el sistema climático es conveniente considerar la biosfera como un componente discreto, al igual que la atmósfera, océanos y la criosfera.La biosfera afecta el albedo de la Tierra, sea sobre la tierra como en los océanos. Grandes áreas de bosques continentales tienen bajo albedo comparado con regiones sin vegetación como los desiertos. El albedo de un bosque deciduo es de aproximadamente 0,15 a 0,18, donde un bosque de coníferas es entre 0,09 y 0,15. Un bosque tropical lluvioso refleja menos aún, entre 0,07 y 0,15. Como comparación, el albedo de un desierto arenoso es de cerca 0,3. Queda claro que la presencia de bosques afecta el presupuesto energético del sistema climático.Algunos científicos, piensan que la quema de combustibles fósiles no es tan desestabilizante como la tala de bosques y la destrucción de los ecosistemas que mantienen la producción primaria de los océanos (Anderson et al, 1987).
Tala de bosques (Miller, 1991)La biosfera también afecta los flujos de ciertos gases invernadero, tales como el dióxido de carbono y el metano. El plancton de las superficies oceánicas utilizan el dióxido de carbono disuelto para la fotosíntesis. Esto establece un flujo del gas, con el océano, de hecho fijando gas desde la atmósfera. Al morir, el plancton, transporta el dióxido de carbono a los fondos oceánicos. Esta productividad primaria reduce en un factor 4 la concentración atmosférica del dióxido de carbono y debilita significativamente el efecto invernadero terrestre natural.Se estima que hasta el 80% del oxígeno producido por la fotosíntesis es resultado de la acción de las algas oceánicas, especialmente las áreas costeras. Por ello la contaminación acuática en esos sectores, podría ser muy desestabilizante (Anderson et al, 1987).La biosfera también afecta la cantidad de aerosoles en la atmósfera. Billones de esporas, virus, bacterias, polen y otras especies orgánicas diminutas son transportadas por los vientos y afectan la radiación solar incidente, influenciando el presupuesto energético global. La productividad primaria oceánica produce compuestos conocidos como dimetilsulfitos, que en la atmósfera se oxidan para formar sulfatos aerosoles que sirven como núcleos de condensación para el vapor de agua, ayudando así a la formación de nubes. Las nubes a su vez, tienen un complejo efecto sobre el presupuesto energético climático. Por lo que cualquier cambio en la productividad primaria de los océanos, puede afectar indirectamente el clima global.Existen por supuesto muchos otros mecanismos y procesos que afectan y que están acoplados al resto del sistema climático.
Geosfera El quinto, y componente final, consiste en suelos, sedimentos y rocas de las masas de tierras, corteza continental y oceánica, y en última instancia, el interior mismo de la Tierra. Tienen un rol de influencia sobre el clima global que varía en las escalas temporales.Variaciones en el clima global que se extienden por decenas y hasta centenas de millones de años, se deben a modulaciones interiores de la Tierra. Los cambios en la forma de las cuencas oceánicas y el tamaño de las cadenas montañosas continentales, influyen en las transferencias energéticas del sistema climático.En escalas mucho menores de tiempo, procesos químicos y físicos afectan ciertas características de los suelos, tales como la disponibilidad de humedad, la escorrentía, y los flujos de gases invernadero y aerosoles hacia la atmósfera y los océanos.
EL CAMBIO CLIMÁTICO GLOBAL
Aumento de temperatura global (Miller, 1991)De acuerdo a la IPCC, una duplicación de los gases de invernadero incrementarían la temperatura terrestre entre 1 y 3.5°C . Aunque no parezca mucho, es equivalente a volver a la última glaciación pero en la dirección inversa. Por otro lado, el aumento de temperatura sería el más rápido en los últimos 100.000 años, haciendo muy difícil que los ecosistemas del mundo se adapten.
El principal cambio a la fecha la sido en la atmósfera, Hemos cambiado y continuamos cambiando, el balance de gases que forman la atmósfera. Esto es especialmente notorio en gases invernadero claves como el CO2, Metano (CH4) y óxido nitroso (N2O). Estos gases naturales son menos de una décima de un 1% del total de gases de la atmósfera, pero son vitales pues actúan como una "frazada" alrededor de la Tierra. Sin esta capa la temperatura mundial sería 30°C más baja.
CAUSAS DEL CALENTAMIENTO GLOBAL
El Efecto InvernaderoLa razón de esta discrepancia de temperatura, es que la atmósfera es casi transparente a la radiación de onda corta, pero absorbe la mayor parte de la radiación de onda larga emitida por la superficie terrestre. Varios componentes atmosféricos, tales como el vapor de agua, el dióxido de carbono, tienen frecuencias moleculares vibratorias en el rango espectral de la radiación terrestre emitida. Estos gases de invernadero absorben y reemiten la radiación de onda larga, devolviéndola a la superficie terrestre, causando el aumento de temperatura, fenómeno denominado Efecto Invernadero (GCCIP, 1997).
Efecto invernadero (Miller, 1991)El vidrio de un invernadero similar a la atmósfera es transparente a la luz solar y opaca a la radiación terrestre, pero confina el aire a su interior, evitando que se pueda escapar el aire caliente (McIlveen, 1986; Anderson et al, 1987). Por ello, en realidad, el proceso involucrado es distinto y el nombre es bastante engañador, el interior de un invernadero se mantiene tibio, pues el vidrio inhibe la pérdida de calor a través de convección hacia el aire que lo rodea. Por ello, el fenómeno atmosférico se basa en un proceso distinto al de un invernadero, pero el término se ha popularizado tanto, que ya no hay forma de establecer un término más exacto.Una de las muchas amenazas a los sistemas de sostén de la vida, resulta directamente de un aumento en el uso de los recursos. La quema de combustibles fósiles y la tala y quema de bosques, liberan dióxido de carbono. La acumulación de este gas, junto con otros, atrapa la radiación solar cerca de la superficie terrestre, causando un calentamiento global. Esto podría en los próximos 45 años, aumentar el nivel del mar lo suficiente como para inundar ciudades costeras en zonas bajas y deltas de ríos. También alteraría drásticamente la producción agricultural internacional y los sistemas de intercambio (WMO, 1986).
MECANISMOS DE FORZAMIENTO IRRADIOACTIVO
Variaciones de Orbita
Variabilidad Solar
Actividad Volcánica
Composición Atmosférica
Retroalimentación
Variaciones de orbita Los cambios en el carácter de la órbita terrestre alrededor del sol, se dan en escalas de tiempo de milenios o más largos. Pueden significativamente alterar la distribución estacional y latitudinal de la radiación recibida. Son conocidas como ciclos milancovitch. Son estos ciclos los que fuerzan cambios entre condiciones glaciales e interglaciales sobre la tierra, con escalas de entre 10.000 y 100.000 años. El máximo de la última glaciación, ocurrió hace 18.000 años.
Variabilidad solar Otro de los mecanismos de fuerza externa, corresponde a cambios físicos en el mismo Sol, que pueden alterar la intensidad y el carácter del flujo de radiación solar. No existe duda que éstos ocurren en un rango variable de tiempo. Uno de los ciclos más conocidos es el de las manchas solares, cada 11 años. Otros parámetros, como el diámetro solar, también varían. Aún no existen datos suficientes como para corroborar variaciones suficientemente fuertes como para generar cambios climáticos.
Actividad volcánica Es un ejemplo de un mecanismo de fuerza interno, erupciones volcánicas por ejemplo, inyectan grandes cantidades de polvo y dióxido de azufre, en forma gaseosa a la atmósfera superior, la estratosfera, aquí son transformados en aerosoles de ácido sulfúrico. Ahí se mantienen por varios años, gradualmente esparciéndose por todo el globo. La contaminación volcánica resulta en reducciones de la iluminación solar directa (puede llegar a un 5 ó 10%) y generan bajas considerables de temperatura.
Composición atmosférica El cambio de composición de gases, especialmente los gases invernadero, es uno de los más grandes mecanismos de fuerza internos.Cambios naturales en el contenido de dióxido de carbono atmosférico, ocurrieron durante las transiciones glaciales - interglaciales, como respuesta a mecanismos de fuerzas orbitales. En la actualidad, la humanidad es el factor más sustancial de cambio.
Retroalimentación El sistema climático está en un balance dinámico. Por ello está continuamente ajustándose a perturbaciones forzadas, y como resultado, el clima se ve alterado.
Un cambio en cualquier parte del sistema climático, iniciado por mecanismos forzados internos o externos, tendrán una consecuencia mucho más amplia, A medida que el efecto se propaga en cascada, a través de los componentes asociados en el sistema climático, se amplifica. Esto es conocido como retroalimentación. A medida que un efecto es transferido, desde un subcomponente del sistema a otro, se verá modificado en carácter o en escala. En algunos casos el efecto inicial puede ser amplificado (feedback positivo), mientras que en otros, puede verse reducido (feedback negativo).Un ejemplo de un mecanismo de feedback positivo, involucra el vapor de agua. Una atmósfera más caliente potencialmente aumentará la cantidad de vapor de agua en ella. Ya que el vapor de agua es un gas invernadero, se atrapará más energía que aumentará la temperatura atmosférica más todavía. Esto a su vez, produce mayor vapor de agua, estableciéndose un feedback positivo.